The mechanism of the modified Ullmann reaction.

نویسندگان

  • Elena Sperotto
  • Gerard P M van Klink
  • Gerard van Koten
  • Johannes G de Vries
چکیده

The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palladium(II) Phosphine-Ylide Complexes as Highly Efficient Homogeneous Pre-catalysts for the Ullmann Homocoupling Reaction of Aryl Halides

A highly efficient Ullmann homocoupling reaction of aryl halides using palladium (II) phosphine-ylide complexes as homogenous pre-catalysts under aerobic conditions has been developed without the need for any chemical co‐reducing agents. The procedure is relatively mild and appears to have broad applicability, being useful for the homocoupling of both electron-deficient and electron-rich aryl h...

متن کامل

Amido-Amino Clay Stabilized Copper ‎Nanoparticles: Antimicrobial Activity and ‎Catalytic Efficacy for Aromatic Amination

   Amido-amino functionalized halloysite stabilized copper nanoparticles (aah-CuNPs) were synthesized through one-pot protocol by a wet chemical method using hydrazine as reducing agent. The nanocomposite formed was stable in dry ethanol. The composition and binding nature of the nanocomposite were studied using FT-IR, DRS-UV, EDAX and powder XRD techniques. The morphological features of th...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Synthesis, Characterisation and Reactivity of Copper(I) Amide Complexes and Studies on Their Role in the Modified Ullmann Amination Reaction

A series of copper(I) alkylamide complexes have been synthesised; copper(I) dicyclohexylamide (1), copper(I) 2,2,6,6-tetramethylpiperidide (2), copper(I) pyrrolidide (3), copper(I) piperidide (4), and copper(I) benzylamide (5). Their solid-state structures and structures in [D6 ]benzene solution are characterised, with the aggregation state in solution determined by a combination of DOSY NMR sp...

متن کامل

Phase-Destabilization Mechanism of Polymer-Modified Bitumens in Quiescent Annealing

Bitumen as a binder in coating and insulating materials is modified with polymers to improve its performance in service conditions. Almost all polymers are incompatible with bitumen, and at high temperatures due to relatively very low viscosity of the bitumen phase, are separated from it. These lead to a considerable limitation in the use and handling of polymer-modified bitumens. An understand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 39 43  شماره 

صفحات  -

تاریخ انتشار 2010